A Proof of Pieri’s Formula Using the Generalized Schensted Insertion Algorithm for Rc-graphs

نویسنده

  • MIKHAIL KOGAN
چکیده

We provide a generalization of the Schensted insertion algorithm for rc-graphs of Bergeron and Billey. The new algorithm is used to give a new proof of Pieri’s formula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of Pieri’s Formula Using Generalized Schensted Insertion Algorithm for Rc-graphs

We provide a generalization of the Schensted insertion algorithm for rc-graphs of Bergeron an Billey [1]. The new algorithm is used to give a new proof of Pieri’s formula.

متن کامل

RC-Graphs and Schubert Polynomials

Bergeron was supported by the National Science Foundation. Billey was supported by the National Physical Science Consortium, IBM and UCSD. Using a formula of Billey, Jockusch and Stanley, Fomin and Kirillov have introduced a new set of diagrams that encode the Schubert polynomials. We call these objects rc-graphs. We define and prove two variants of an algorithm for constructing the set of all ...

متن کامل

Rc - Graphs and a Generalized Littlewood - Richardson Rule

Using a generalization of the Schensted insertion algorithm to rcgraphs, we provide a Littlewood-Richardson rule for multiplying certain Schubert polynomials by Schur polynomials.

متن کامل

Pieri’s Formula via Explicit Rational Equivalence

Pieri’s formula describes the intersection product of a Schubert cycle by a special Schubert cycle on a Grassmannian. Classically, it is proven by calculating an appropriate triple intersection of Schubert varieties. We present a new geometric proof, exhibiting an explicit chain of rational equivalences from a suitable sum of distinct Schubert varieties to the intersection of a Schubert variety...

متن کامل

Pieri’s Formula for Generalized Schur Polynomials

Young’s lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002